Hutchcroft-Pete revisited (part one)

Sam Mellick Joint work with Łukasz Grabowski and Héctor Jardón-Sánchez

<u>samuel.a.mellick@mcgill.ca</u>

Executive summary

Let Γ denote an infinite countable group We will discuss *Kazhdan's Property (T)* for such groups Our goal is to give a simpler proof of: **Theorem**[Hutchcroft-Pete] If Γ has Property (T), then it has a pmp action with cost one.

Let \mathcal{G} denote a *random graph* with vertex set a subset of Γ

Formally, $\mathscr{G}: (\Omega, \mathbb{P}) \to \operatorname{graphs}_{\Gamma}$ is a measurable function from some *auxiliary* probability space (Ω, \mathbb{P}) . Here graphs $\Gamma \subset \{0,1\}^{\Gamma \times \Gamma}$ is the *space of graphs* on Γ

The *distribution* or *law* of \mathscr{G} is the pushfoward measure $\mu = \mathscr{G}_*(\mathbb{P})$

We say that \mathcal{G} is *invariant* if the random graphs $\gamma \cdot \mathcal{G}$ and \mathcal{G} have the same distribution for all $\gamma \in \Gamma$. Equivalently, that $\Gamma \curvearrowright (\text{graphs}_{\Gamma}, \mu)$ is pmp

of the window

Random graphs on I

- *Concretely,* the behaviour of \mathscr{G} in any finite window doesn't depend on the location

Cost via random graphs

If *G* is invariant then we define its *expected degree* as follows

$$\mathbb{E}\left[\deg_{\mathscr{G}}(0)\right] = \int_{\mathbb{R}}^{\mathbb{R}}$$

where we denote by $0 \in \Gamma$ the identity element

ranges over all *connected* spanning invariant random graphs on Γ

 $\deg_G(0)d\mu(G),$ graphs

Fact: The (infimal) *cost* of a group Γ is equal to $\inf_{\mathscr{G}} \frac{1}{2} \mathbb{E} \left[\deg_{\mathscr{G}}(0) \right]$, where \mathscr{G}

The *intensity* of an invariant random graph \mathcal{G}

intensity(
$$\mathscr{G}$$
) := $\mathbb{P}\left[0 \in \mathscr{G}\right] = \mu(\{G \in \text{graphs}_{\Gamma} \mid 0 \in G\})$

It follows from Gaboriau's induction formula (or prove it directly) that

$$\operatorname{cost}(\Gamma) - 1 = \inf_{\mathscr{G}} \left\{ \frac{1}{2} \mathbb{E} \left[\deg_{\mathscr{G}}(0) \left| 0 \in \mathscr{G} \right] - \operatorname{intensity}(\mathscr{G}) \right\},\$$

where *G* ranges over all invariant random graphs with a unique infinite component.

Intensity

The Hutchcroft-Pete argument

Recall that $\operatorname{cost}(\Gamma) - 1 = \inf_{\mathscr{G}} \left\{ \frac{1}{2} \mathbb{E} \left[\deg_{\mathscr{G}}(0) \right] - \operatorname{intensity}(\mathscr{G}) \right\}$

Let Γ be an infinite group with Kazhdan's Property (T), and fix a (finite) generating set $S \subset \Gamma$.

Then for any $p \in (0,1)$ there exists a random *subgraph* \mathcal{G} of Cay(Γ , S) with a unique infinite connected component and intensity p. In particular, such a group Γ has cost one.

Let $\pi : \Gamma \to U(\mathcal{H})$ denote a *unitary representation* of Γ on a Hilbert space \mathcal{H}

A vector $\xi \in \mathcal{H}$ is *invariant* if $\pi(\gamma)\xi = \xi$ for all $\gamma \in \Gamma$

The vector is (Q, ε) almost invariant if $\|\pi(\gamma)\xi - \xi\| < \varepsilon \|\xi\|$ for all $\gamma \in Q$

for all finite $Q \subseteq \Gamma$ and $\varepsilon > 0$

 Γ has *Property* (*T*) if any representation with almost invariant vectors admits a nontrivial invariant vector

Can also define for locally compact second countable (lcsc) groups

Kazhdan's Property (T)

- A representation has *almost invariant vectors* if it admits (Q, ε) almost invariant vectors

Historical comments

If Γ has Property (T), then Γ must be finitely generated. Originally introduced to show that *any* lattice in a higher rank Lie group is finitely generated.

Why (*T*)? Can introduce a topology on the set of representations, and the property is exactly saying that the *T*rivial representation is isolated in that space.

Basic examples

- Finite groups
- $SL_n(\mathbb{Z})$ for $n \geq 3$
- *Random* groups with overwhelming probability (parameters)
- Automorphism groups of (sufficiently high rank) free groups

Basic nonexamples

- almost invariant vectors
- In particular, any group Γ with Property (T) must have that its abelianisation $\Gamma/[\Gamma, \Gamma]$ is *finite*

• Any group which is *amenable* and has Property (T) must be finite. Use that amenability is equivalent to saying the regular representation $l^2(\Gamma)$ has

Glasner-Weiss

Theorem

set Prob($\{0,1\}^{\Gamma}$) of Γ -invariant probability measures on $\{0,1\}^{\Gamma}$)

Let $\mathscr{E} \subset \operatorname{Prob}(\{0,1\}^{\Gamma})^{\Gamma}$ denote the subset of ergodic measures

Then \mathscr{E} is closed *if and only* if Γ has Property (T)

- Consider the collection of invariant random subsets of a group Γ (that is, the

...but in what topology?

Weak convergence

Definition (bad) A sequence of probability measures μ_n on $\{0,1\}^{\Gamma}$ weakly converges to μ if $\lim_{n \to \infty} \int_X f(x) d\mu_n(x)$

for all continuous functions $f: X \to \mathbb{R}$

We will be interested in weak convergence in the space κ^{Γ} , where $\kappa = \{0,1\}^{\mathbb{N}}$ denotes the Cantor space, but for simplicity I'll just talk about $X := \{0,1\}^{\Gamma}$

$$f(x) = \int_X f(x) d\mu(x)$$

Weak convergence, redux

A subset A of a topological space is *clopen* if and only if its indicator function 1_A is continuous

Definition (better) A sequence of probability measures μ_n on $\{0,1\}^{\Gamma}$ weakly converges to μ if

 $n \rightarrow \infty$

for all $F \subset \Gamma$ finite and $\alpha : F \rightarrow \{0,1\}$.

That is, if the sampling probability in any finite window converges.

 $\lim \mu_n (\{\omega \in \{0,1\}^{\Gamma} \mid \omega \mid_F = \alpha\}) = \mu (\{\omega \in \{0,1\}^{\Gamma} \mid \omega \mid_F = \alpha\}),$

Glasner-Weiss (hard direction)

action $\Gamma \curvearrowright (X, \mu)$ with a sequence $A_n \subseteq X$ of asymptotically invariant sets,

$$\mu(A_n) = \frac{1}{2}$$
, and for all γ e

Let $\Sigma^n : (X, \mu) \to \{0, 1\}^{\Gamma}$ denote symbolic dynamics with respect to A_n

$$\Sigma_x^n = \{\gamma \in$$

Then as invariant random subsets Σ^n weakly converges to $\frac{1}{2}(\delta_{\emptyset} + \delta_{\Gamma})$, which is manifestly nonergodic. But each Σ^n is ergodic.

Suppose Γ does *not* have Property (T). By Connes-Weiss, Γ admits an ergodic pmp

 $\in \Gamma$ we have $\mu(A_n \land \gamma \cdot A_n) \to 0$

 $\equiv \Gamma \mid \gamma^{-1} x \in A_n \}$

Glasner-Weiss (easy direction)

projects via π_n to μ_n in each factor

From a nontrivial Γ -invariant element of $L_0^2(X, \mu)$, for any $\varepsilon > 0$ we can find a *continuous* element $\varphi \in L_0^2(X, \mu)$ with $\langle \varphi, \gamma \cdot \varphi \rangle < \varepsilon$ for all $\gamma \in \Gamma$

Let
$$\varphi_n = \varphi \circ \pi_n$$
, so $\int_Y |\varphi_n - \gamma \cdot \varphi_n|^2 d\lambda = \int_X |\varphi - \gamma \cdot \varphi|^2 d\mu_n \to \int_X |\varphi - \gamma \cdot \varphi|^2 d\mu < \varepsilon$

have Property (T)

Take μ_n to be ergodic probability measures on $X = \{0,1\}^{\Gamma}$ weakly converging to nonergodic μ

Form the product $Y = (X^{\mathbb{N}}, \bigotimes_{\mathbb{N}} \mu_n)$ and choose a measure λ in its ergodic decomposition that

So $L_0^2(Y, \lambda)$ has almost invariant vectors, but no *invariant* vectors by ergodicity, so Γ cannot

On the next episode...

- Bernoulli extensions
- Kazhdan optimal partitions
- Actions with finitely many infinite clusters

samuel.a.mellick@mcgill.ca